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Abstract We review our recent progress on efficient algorithms for generating well-
spaced samples of high dimensional data, and for exploring and characterizing these
data, the underlying domain, and functions over the domain. To our knowledge, these
techniques have not yet been applied to computational topology, but the possible
connections are worth considering. In particular, computational topology problems
often have difficulty in scaling efficiently, and these sampling techniques have the
potential to drastically reduce the size of the data over which these computational
topology algorithms must operate. We summarize the definition of these sample
distributions; algorithms for generating them in low, moderate, and high dimensions;
and applications in mesh generation, rendering, motion planning and simulation.

1 Introduction

1.1 Maximal Poisson-disk Sampling (MPS) Definition

Sample points are called well-spaced if they have a limited ratio between the max-
imum distance between any domain point and its nearest sample point, and the
minimum distance between two sample points. A well-spaced sampling is efficient
at exploring a space. The maximum distance ensures that the domain is adequately
covered and reduces interpolation error. The minimum distance ensures that we do

Mohamed S. Ebeida and Scott A. Mitchell
Computing Research, Sandia National Laboratories, e-mail: msebeid@sandia.gov

Anjul Patney, Andrew A. Davidson, Stanley Tzeng?, and John D. Owens
Dept. of Electrical and Computer Engineering (? Dept. of Computer Science), University of Califor-
nia, Davis, e-mail: jowens@ece.ucdavis.edu

Muhammad A. Awad, and Ahmed H. Mahmoud
Dept. of Naval Architecture and Marine Engineering, Alexandria University, Egypt

1



2 Ebeida et. al

Fig. 1: A maximal Poisson disk sample over a non-convex domain and a uniform
sizing function.

not waste time or generate noise with samples that provide similar information to
nearby samples. Typically well-spaced is defined locally, by stating that the aspect
ratio of Voronoi cells is bounded. Samples that have random positions are often
preferred because they do not introduce directional bias in the estimates.

Maximal Poisson-disk Sampling (MPS) is a process that selects a random set
of points, X = {xi}, from a given domain, D , in some d-dimensional space. The
samples are at least a minimum distance apart, satisfying an empty disk criterion:
Equation (2). For simplicity we focus on the uniform case, where the disk radius, r, is
constant regardless of location or iteration. Inserting a new point, xi, defines a smaller
domain, Di ⇢ D , available for future insertions, where Do = D ; see Equation (1).
The maximal condition, Equation (3), requires that the sample disks overlap, in the
sense that they cover the whole domain leaving no room to insert an additional
point. This property identifies the termination criterion of the associated sampling
process. Bias-free or unbiased means that the likelihood of the next sample being
inside any remaining subdomain is proportional to the area of the subdomain; see
Equation (1). This is uniform sampling from the uncovered area, equivalent to
uniform sampling over the entire domain, and rejecting already-covered points. See
Fig. 1 for an example MPS over a non-convex domain. Extending MPS disks to
squares, or ellipses and rectangles in anisotropic spaces, is natural, yet unexplored.

Bias-free: 8xi 2 X ,8W ⇢ Di�1 : P(xi 2 W) =
Area(W)

Area(Di�1)
(1)

Empty disk: 8xi,x j 2 X ,xi 6= x j : ||xi � x j|| � r (2)

Maximal: 8x 2 D ,9xi 2 X : ||x� xi|| < r (3)
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1.2 Applications of MPS

Random point distributions, including MPS, have found widespread use in com-
puter graphics [17, 19]. Most applications are in dimensions below 6. Rendering
Section (5.2) makes use of sampling light rays. The global illumination problem is
concerned with computing indirect lighting, light from sources that are reflected off
surfaces before illuminating an object in a scene. Computing the light in a scene
exactly is intractable because of the number of combinations of light sources, ray
directions, surface reflection angles, and observer positions. This is made worse if
these quantities are unknown a priori, such as the location of an observing character
in a game. An approximate solution makes use of MPS points. These points sample
the scene space, and we can precompute the approximate contribution of each sample
point, the inter-sample transmissions. Then, in real time, we may magnify by light
source intensity and interpolate and combine with other information. A similar MPS
sampling and workflow is done for texture synthesis. A small piece of a texture is
placed at each MPS sample point, and the boundaries between patches are blended
so as not to stand out to an observer.

In these graphics applications and some others, all three properties of MPS are
desired: maximality ensures the accuracy of the sampled approximate solution; empty
disk ensures efficiency by avoiding nearby, redundant points; and bias-free avoids
artificial visual artifacts, repeating patterns, that a deterministic regular spacing
produces. Humans are expert at detecting patterns, even imagining them where none
exists. The distribution of retinal cells in our eyes has a Fourier spectrum much like
that of MPS, which may help explain why MPS works so well.

MPS points are well-spaced, which leads to meshes with well-shaped elements.
Other meshing algorithms generate well-spaced points, but MPS is also random.
For simulating fracture, e.g. for carbon sequestration in Fig. 2, meshes with both
properties are required [2, 7]. The mesh randomness models some of the natural
material strength variability. Generating different meshes for the same geometry
using the same sizing function provides a useful tool to study the sensitivity of the
solution to the mesh, complementary to refinement studies; see Fig. 6(a).

1.3 Potential Ties to Computational Topology

We speculate that some MPS techniques and applications may be useful for analysis
of data for computational topology. For example, as in global illumination, MPS
could be used as cluster centers as a form of resampling the domain data, to reduce
the size of a computational topology point cloud. MPS processes could also be used
to generate the initial data points, perhaps modified to place more points where they
are topologically significant. In particular, many computational topology algorithms
rely on a mesh. Our sampling techniques can be used to create such a mesh. Going
further, we may circumvent the need for a mesh by using the structure implied by the
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disks. For example, we are investigating implicit Voronoi diagrams for traversing a
point cloud to construct the Morse-Smale complex.

One recent use of MPS points in high dimensions is real-time robot motion plan-
ning, where the space is the configuration space of the robot and its obstacles [18].
The challenges for motion planning are similar to those for some discrete computa-
tional topology calculations. Both rely on an imperfect representation of the space
by point clouds. Algorithms for both problems typically suffer from the curse of
dimensionality, and the point clouds are typically high dimensional. In motion plan-
ning the goal is to find one path between two points, which has similarities to finding
Morse-Smale or Reeb graph paths, and contrasts to trying to characterize the entire
space in homology calculations. Recently a realtime robot motion planning problem
was solved using our MPS sampling of its 23-dimensional configuration space, so
there is hope that large spaces from topology might become computationally tractable
as well. Conversely, it is possible that computational topology techniques for finding
smooth and short paths, e.g. homology generators and Morse-Smale paths, could
be used to smooth and shorten a robot path. Smooth and short paths mimic human
motions and are more efficient.

2 MPS Algorithms in Low Dimensions

2.1 Algorithmic Challenges

Poisson-disk sampling is defined as a serial statistical process of rejection sampling:
generate a disk uniformly at random and reject it if its center lies inside a prior disk.
A maximal sampling is defined as achieving the limit distribution. A straightforward
implementation of the statistical process is called “dart throwing,” where a dart is
synonymous with a candidate disk center point. In dart throwing, most darts are

(a) Initial Voronoi mesh. (b) Early time. (c) Late time.

Fig. 2: Fracture after injecting CO2 below caprock. The color represents maximum
principal stress. The initial fracture joints are sealed, but opened and spread due to
the high injection pressure.
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accepted in the beginning of the process, but the likelihood of accepting the next
point is proportional to the volume fraction of the domain left uncovered by a disk,
which typically becomes vanishingly small as the process continues.

A process definition is not the same as an output definition, nor necessarily the
most efficient way of achieving that output. (Consider defining “sorted order” as the
output of the bubble sort process. Only after “sorted order” is defined independent
of the process that produced it do we have the chance to discover quicksort.) Unfor-
tunately we (the community) do not have a precise closed-form description of the
MPS output distribution, nor are we sure that it is the ideal for random well-spaced
points [14]. One branch of research has modified the MPS process in order to achieve
efficiency [5]. Our (the authors’) first solutions are in a different research branch,
where we propose algorithms that produce equivalent outputs to dart throwing, but
more efficiently.

2.2 Our Algorithmic Solutions

In particular, to find an efficient equivalent process, we rely on the observation that
the probability of introducing the next disk center in any uncovered subregion is
proportional to the area of the subregion. We use a background grid subdivision of
the domain to track a superset of the remaining uncovered subregions. Cells that
are completely covered by a single disk are discarded. Efficiency follows from the
superset being not much bigger than the uncovered region. The background grid is
uniform with cell diagonals of length r. This size ensures a cell can have at most one
point, whose disk completely covers the cell. The background grid also speeds up
retrieving nearby disks, to check if a sample point is inside one. We now summarize
two variations that use this grid [11, 13].

2.2.1 Efficient MPS by Polygon Tracking

The first MPS algorithm we developed has two phases [13]. The first phase is dart
throwing, but each dart is selected within a grid cell, not the entire domain. After a

Fig. 3: Generating a tight polygonal superset of the uncovered regions. From left to
right, we start with the cell, then subtract disks. We use the chords instead of the arcs
between intersection vertices.
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number of dart throws proportional to the number cells, we switch to the second phase.
We further refine each cell by constructing a polygon that is closer to the uncovered
region inside the cell, but is still a superset; see Fig. 3. Now we do dart throwing
inside the polygons: we select a polygon uniformly by area, then a dart uniformly
inside it. If the dart is uncovered we accept it and update the polygons. The chance
of a dart being uncovered is provably large, which leads to a provable expected run-
time of E(n logn). (There is typically no deterministic time bound, e.g. O(n logn),
for these types of algorithms because of the random decisions they must make.)
Unbeknownst to us there was a prior method with the same guarantees of maximality,
bias-free, and E(n logn) time [15]. It uses the evolving Delaunay triangulation to
keep track of the remaining void. Ours [13] was the first method based on grids with
these guarantees; grids are preferred in some settings due to their locality, simplicity,
and speed. Our method was easily parallelized on a GPU. However, keeping track of
polygon intersections is both cumbersome and requires a large amount of memory. If
we increase the domain dimension the memory consumption explodes, restricting
this method to low-dimensional spaces. The next method we developed addresses
these shortcomings for slightly higher dimensions, and we prefer it even for lower
dimensions.

2.2.2 Simple MPS by Implicit Quad-Trees

The second method [11] we developed, Simple MPS, maintains all of the desirable
qualities of our previous method, Efficient MPS [13], namely maximality and bias-
free, with the added benefits of being simpler to code; using less memory; faster
run-time even in low dimensions and scalable to higher dimensions in practice
(but without a run-time proof). It starts with dart throwing in the background grid;
described in Section (2.2.1) and identical to the first algorithm [13]. However, instead
of proceeding to polygons, we simply subdivide all the remaining child cells. Covered
child cells are discarded, and we repeat the algorithm on the remaining cells. Since
the cells are all the same size, it is easy to represent them by indices, and we do not
need the overhead of a tree as in a true quadtree.

The key to this strategy’s efficiency is that the collection of active cells is a
close approximation to the entire uncovered area, even if one particular cell is much
larger than the uncovered area it encloses. In practice the number of cells decreases
geometrically per refinement, which helps both runtime and memory, and allows
us to reach maximality by refining down to machine precision. We were able to
maximally sample 6d domains on a CPU. On the GPU, we sampled at an impressive
rate of 1M samples/sec in 2d and 75K samples/sec in 3d. More details on how to
parallelize, and proofs of maximality and bias-free, can be found in our paper [11].
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2.3 Variable Radii MPS

We define two useful variations of MPS [16]. In the first version, the size of the disks
varies spatially over the domain; see Fig. 4(b) for a classic stippling application. We
still get locally well-spaced points if this variation is slow, e.g. the disk sizing function
satisfies a Lipschitz condition. The quality of the meshes generated from those points
degrades smoothly as the variation increases, up to some critical threshold after
which there are no guarantees. The run-time also increases with the variation, because
proximity checks must search a larger neighborhood. Spatially varying radii had been
considered previously by other authors [3], but we appear to be the first to quantify
these conditions and their effects [16].

If the radii of two disks differ, there are several ways of defining “conflict,” the
conditions under which a dart is rejected because it fails to satisfy a version of
Equation (2). There are variations based on size and generation order. Each variation
has advantages and disadvantages. Defining conflict as the smaller disk containing
the center of the larger disk provides the best quality and it can tolerate the largest
Lipschitz constant (< 1), but generates the largest point sets. If we define a conflict as
a candidate disk center lying inside a previously accepted disk, then this is the easiest
to implement, as it is a minor change to Simple MPS and other algorithms. However,
it has the biggest restriction on the Lipschitz constant (< 1/2) and provides the
weakest output quality guarantees. We have also explored sifted disks for reducing
the discrete density of a maximal point set, by removing and relocating points, while
still maintaining the MPS conditions [8].

Our second useful variation of MPS [16] is to use two radii for each point, two-
radii MPS; see the concentric blue and red disks in Fig. 4(a). We decouple the
maximality (coverage, blue) and conflict (empty-disk, red) conditions, by using
different disk radii for each. I.e. we replace the disk-free “r” in Equation (2) with r f ,
and replace the coverage “r” in Equation (3) with rc. One benefit of a larger coverage
radius rc is a smoother noise spectrum [20], defined by the Fourier transform of
all pairwise point distances; see Fig. 5. We have also explored adapting a point set
to obtain a smaller coverage radius, which improves interpolation error and mesh
quality, by a method we call opt-beta, locally optimizing the position of nodes [6].

3 Meshing Algorithms Based on MPS

We consider two types of meshes: constrained Delaunay triangulations [10] and
Voronoi polyhedra [9]. See Fig. 6 for triangles and Fig. 8 for poyhedra. MPS produces
well-spaced points, which can lead to well-shaped elements immediately, without
the need for post-processing such as smoothing or edge swapping; see Fig. 7(b). For
Delaunay triangulations we must place points exactly on the domain boundary to get
a conforming mesh. We must place boundary points more densely than in the interior
to ensure good quality triangles. In Voronoi meshing, the MPS points are the Voronoi
cell seeds, and it is better if the points lie strictly interior to the domain, and the cells
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(a) Two-radii, rc > r f .

(b) Spatially varying radii.

Fig. 4: Variable radii
MPS.


    
















    

















(a) Single radius MPS


    
















    

















(b) Two radii, rc = 2r f .

Fig. 5: Spectral properties [20] of single-radii and two-
radii MPS.

(a) Two random meshes with
the same radius and domain.

(b) Random meshes of non-convex domains. Red internal
interfaces are represented in the mesh.

Fig. 6: Delaunay triangulations via Poisson-disk sampling.

are clipped by the domain boundary. Using interior points, cells have better aspect
ratios, and the Voronoi mesh is smaller.

Delaunay refinement [4] is the most popular method for well-spaced points and
well-shaped triangles. It creates triangles first, and adds points to remove bad-quality
triangles. In contrast, MPS generates well-spaced points first, and only forms triangles
at the end. The theoretical guarantees about the outputs, the numbers of points and
elements’ qualities, are nearly identical. In practice, freedom from the vagaries of
intermediate triangles appears to allow MPS to change mesh size more quickly [1],
and more closely adhere to a sizing function, for the same quality requirements.
The local nature of MPS operations leads to near-linear time in serial; see Fig. 7. It
also leads to easy parallelism with little communication [10]. In contrast Delaunay
refinement must build very large intermediate triangles between distant points.
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Fig. 7: Algorithm performance and mesh quality for our MPS triangle mesher.

Fig. 8: MPS Voronoi meshes. The boundary elements are nearly as large and well-
shaped as the interior elements. Operations are local so it is easy to handle compli-
cated global topology.

4 Sampling in High Dimensions

4.1 Algorithmic Challenges

Although the definition of MPS is dimension-independent, some properties of the
distribution change as the dimension increases, and the algorithms that work well
in low dimensions take more memory and time. High-dimensional spaces present
several challenges. As dimension increases, the volume of a sphere relative to its
bounding box decreases, and relative to its inscribed box it increases. A unit box
can contain an exponential-in-d number of unit disks. The box becomes a worse



10 Ebeida et. al

approximation of a sphere, and this dooms grid-based methods as expensive in time,
memory, or both. Regardless of the methods used to generate the sampling, each disk
can have exponentially more nearby disks as the dimension increases. This increases
the combinatorial complexity of computing intersections of disks, or disks with grids.

If we take a step back from MPS, a typical underlying goal is to sample the
space in a way that gives unbiased estimates, with low variance, of some quantity.
Typically this still means our sampling should be random. However, points are just
one way of sampling, a zero-dimensional way. MPS points are chosen uniformly
at random by volume without regard to the shape of the domain. Thus it is hard to
hit narrow regions with point samples, even though some of their dimensions might
be large. In particular, in standard MPS algorithms it is hard to tell if maximality
has been reached and the domain is covered by disks. More generally, it is hard to
track narrow regions of interest. In uncertainty quantification, the domain may be the
parameter space of a simulation, and the region of interest is where the simulation
returns a value below a threshold. Typically the simulation is more sensitive to some
parameters than others, so this subregion is narrow in those dimensions, but large in
the insensitive parameter directions.

4.2 Algorithmic Solution: k-d Darts

To address such a scenario, rather than evaluating a function at a single point,
we consider higher-dimensional evaluations along k-dimensional hyperplanes or
“flats” [12]. Initially, we defined a “k-d dart” as a set of axis-aligned hyperplanes
spanning all combinations of k free and d � k fixed coordinates. However, further
analysis and experimentation showed that just picking k-dimensional hyperplanes
with random free-coordinate indices is simpler and works just as well. This is all

Fig. 9: Sampling a narrow region with hyperplanes increases the amount of infor-
mation we capture. While the number of random points landing in the gray area
approaches zero as its thickness decreases, each random line is destined to capture a
portion of it.
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predicated on the assumption that it is possible to evaluate a function along a flat. A
particularly nice situation is when the function is analytic, and we can substitute the
flat’s fixed coordinates for its parameters. As a last resort, one could estimate the
evaluation of a function along a flat numerically. In general the cost of evaluating a
higher-dimensional flat is typically larger than a 0-d flat (i.e. a point). However, the
amount of information gained and the ability to find narrow regions is often worth
the cost. We get faster convergence, and higher quality in our examples.

5 High-Dimensional Algorithms using k-d Darts

We next show the utility of darts over several algorithmic examples: generating
relaxed maximal Poisson-disk samples, approximating depth of field blur [12, 21],
and volume estimation [12].

5.1 Relaxed Maximal Poisson-disk Sampling (RMPS)

In a maximal Poisson-disk sample, the coverage disks overlap to cover the entire
domain, leaving no room to increase the sample size. At maximality, the achieved
coverage radius rc is at most the prescribed conflict radius r f ; recall Section (2.3).
Achieving this condition is extremely hard in high dimensions (e.g. d > 6). A relaxed
version of this condition allows the coverage disks to be slightly larger than the
conflict disks, quantified by their ratio, the distribution aspect ratio b = rc

r f
> 1.0.

Increasing the allowable upper bound on b makes solving the problem easier. k-d
darts [12] utilize line darts to capture the narrow voids between existing conflict disks
while simultaneously estimating the volume of the remaining void. Line darts are
much faster than point darts for RMPS, because it is fast and easy to subtract a set of
spheres from an axis-aligned line. The remaining segments are uncovered, and we
introduce a new sample along them.

Our k-d darts RMPS method produces nearly-maximal distributions whose spec-
tral properties (randomness) are nearly identical to those of MPS. It uses much
less memory than previous methods, allowing us to examine larger and higher-
dimensional domains. We sample domains of up to 6 dimensions on a CPU, and
3 dimensions on a GPU.

5.2 Depth of Field by Line Darts (DoF)

Optical camera lenses focus at a single distance from the camera, so captured images
typically exhibit blur effects at other distances. Computer-generated images, on the
other hand, by default are in focus at all distances. Simulating the depth-of-field
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Point Samples in 
the lens domain

Line Samples in 
the lens domain

Fig. 10: Depth of field line sampling vs. point sampling. We have four colored
samples in scene space (middle). For each one, point sampling generates one point
in lens space (left), while our method generates multiple line samples (right).

effects of a real camera is helpful in adding realism to computer graphics. Using one-
dimensional darts or line darts or line samples [12, 21], one can produce high-quality
low-noise images with depth-of-field effects. Compared to traditional point sampling,
line darts are able to capture more information per sample. Although each line dart is
computationally more expensive than a point dart, in practice line-darts reduce the
overall run time to produce an image of comparable quality.

Depth of field involves sampling the image in 4-d (x,y,u,v) space, where (x,y) is
screen space and (u,v) is lens space. In k-d darts [12], each dart sample consists of
four orthogonal lines, one spanning each of the 4-d coordinates. In wagon wheel [21],
each dart sample consists of a radial line in (u,v) space, passing through the center
of the lens; see Fig. 10. The remainder of this section elaborates on the wagon wheel
approach.

For each pixel we generate several sampling locations (xp,yp) within the pixel and
then perform line sampling along the lens (u,v) space. Rendering starts by computing
intersections between line darts and incoming primitives that represent the scene.
Primitives that intersect the line samples then generate colored line segments, whose
contribution is aggregated in to the final color of the pixel. How line samples are
placed along the lens plays a crucial role in the final image quality.

A wagon wheel line sampling pattern (Fig. 10) has several advantages when
compared to alternatives. First, it has uniform line sample lengths. This helps when
implementing the algorithm on highly parallel architectures, such as a GPU. Second,
line samples passing through the origin can be expressed in a simple slope-intercept
form v = mu, simplifying the math. Lastly, the bias that is associated with such a
pattern can be easily removed by a reweighting during filtering. An alternative would
be a grid-like pattern, as the ridges of a waffle, using k-d darts in just (u,v) space.

Figure 11 shows the results of several scenes rendered with 256 point samples
versus 16 wagon wheel line samples, run in parallel on a NVIDIA GTX 580 GPU.
Also, for k-d darts, 16 line-darts produce a better picture, more quickly, than 1024
points. Using either wagon wheels or k-d darts, line sampling demonstrates a clear
win in terms of both quality and performance.
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(a) Example 800 ⇥ 800 pixel scenes rendered using 256 point samples.

(b) Example 800 ⇥ 800 pixel scenes rendered using 16 line samples.

Fig. 11: 256 point samples (top) and 16 wagon-wheel line samples (bottom) per pixel
produce nearly the same image, but line samples are about 4 times faster.
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We plot |mean� true|/true by the number of darts, n.
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Fig. 13 Ellipse volume estimation histograms, the ratio of estimate volume to true volume by
frequency, for 106 darts for each {s,k} parameter combination from Figure 12.

6 Summary

We have highlighted the main research results of our sampling group from 2011 to
mid-2013. We consider MPS, or more generally point sets that are both well-spaced
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(1r), and orthogonal pairs of randomly oriented darts (1o). Bottom uses axis-aligned darts in 10-d.
We plot |mean� true|/true by the number of darts, n.
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Fig. 12 Mean error of d-dimensional ellipse volume estimation, for varying squish factor s, dart
dimension k, and fixed number of object rotations r = 10. Top uses axis-aligned (1a), randomly
oriented (1r), and orthogonal pairs of randomly oriented darts (1o). Bottom uses axis-aligned
darts in 10-d. Left shows the ratio of estimate volume to true volume by frequency, Right shows
|mean� true|/true by the the number of darts, n.
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Fig. 13 Ellipse volume estimation histograms, the ratio of estimate volume to true volume by
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6 Summary

We have highlighted the main research results of our sampling group from 2011 to
mid-2013. We consider MPS, or more generally point sets that are both well-spaced
and random, to be a very rich area, crossing many fields and applications. Over the
course of our research, we have explored many modifications to our algorithms and

Fig. 12: d-dimensional hyper-ellipsoid volume estimation, for varying squish factor s
scaling the main axis, dart dimension k, and fixed number of random rotations r = 10
of the ellipsoid. Top uses axis-aligned (1a), randomly oriented (1r), and orthogonal
pairs of randomly oriented darts (1o). Bottom uses axis-aligned darts in 10-d. Left
shows the ratio of the estimated to true volume by frequency for a fixed number of
samples, n. Right shows |mean� true|/true volume by the the number of darts, n.

5.3 Volume Estimation by Hyperplane Darts

We study the accuracy of high-dimensional sampling using k-d darts, on the classical
problem of estimating the volume of an object [12]. We seek to experimentally
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quantify the effects of the object orientation, dart orientation, object surface area
to volume ratio, and dimensions of the object and dart. We create a d-dimensional
hyper-ellipsoid object as follows.

• Start with a unit d-ball (d-dimensional unit sphere);
• Scale along the x-axis by a factor squish s to generate an elliptical profile; and
• Perform r random Givens rotations to randomly orient it.

We compute the volume of the ellipsoid analytically, for the ground-truth. For
comparison, we estimate the volume of the ellipsoid using k = 0 darts, i.e. classical
Monte Carlo point sampling: sample random points from the ellipsoid’s bounding
box and count the fraction inside the ellipsoid. The accuracy decreases as d increases.

For k-d darts, we can choose to throw line darts, plane darts, or darts of any
dimension k < d. Fig. 12 show how k-d darts consistently outperform point darts.
Their advantage increases as k increases.

Darts may be axis-aligned or arbitrarily oriented. We recommend axis-aligned
darts for three reasons. First, it is easy to distribute aligned darts uniformly, which
ensures that the expected mean of the function estimates is accurate. Second, it is
easiest to implement aligned darts, since it involves simply fixing coordinate values.
Third, in many cases it is most efficient because we may obtain an expression for the
underlying function along a dart by substituting in the fixed coordinate values. We
compare the accuracy of aligned and unaligned darts in the top row of Fig. 12. For
squished ellipsoids, aligned darts are slightly more accurate, but the prior reasons are
more significant.

6 Summary

We have highlighted the main research results of our sampling group from 2011
to 2013. We consider MPS, or more generally point sets that are both well-spaced
and random, to be a very rich area, crossing many fields and applications. Over the
course of our research, we have explored many modifications to our algorithms and
used the output for many different applications. Uses and features of our sample
generation and modification algorithms are summarized in Tables 1 and 2. We have
compared and contrasted these to the works of others. These variations [6, 8], and
their tradeoffs, led us to the conceptual framework for sampling illustrated in Fig. 13.
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name goals mesh nodes beta dim

Opt-beta reduce beta ok move tune < 1 2
Steiner reduction fewer points, preserve mesh angles yes (re)move � 1 2

Sifted disks fewer points, preserving beta=1 ok (re)move 1 2
k-d darts create points, integration, in high dimensions create ! 1 2–23

Variable radii MPS create points with sizing function or spacing yes create tune � 1 2
VorMesh MPS create Voronoi polyhedral mesh yes create 1–2 2–3
DelMesh MPS create Delaunay triangle mesh yes create 1–2 2–3
Simple MPS create points in moderate dimensions ok create 1 2–6

Efficient MPS create points in two dimensions ok create 1 2

Table 1: Our sample generation and modification algorithms’ application context.

name GPU time memory features ref

Opt-beta numeric n local position optimization, as smoothing [6]
Steiner reduction ⇡ n n 2-to-1 node replacement [1]

Sifted disks n n 2-to-1 node replacement [8]
k-d darts n2d2 nd high-d, global hyperplanes, many applications [12]

Variable radii MPS ⇡ n n provable qualities [16]
VorMesh MPS ⇡ n n bounded domains, provable quality [9]
DelMesh MPS GPU ⇡ n n bounded domains, provable quality [10]
Simple MPS GPU ⇡ n2d n2d efficient flat quadtree tracking voids [11]

Efficient MPS GPU n logn n provable runtime, polygon approx. voids [13]

Table 2: Our algorithms’ performance and features. Many [9, 10, 16] use a form of
Simple MPS [11].
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